Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.824
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731916

RESUMEN

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Asunto(s)
Pirazoles , Trypanosoma cruzi , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Humanos , Trypanosoma cruzi/efectos de los fármacos , Antiparasitarios/farmacología , Antiparasitarios/síntesis química , Antiparasitarios/química , Diseño de Fármacos , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma brucei rhodesiense/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química
2.
Mem Inst Oswaldo Cruz ; 119: e230223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716979

RESUMEN

BACKGROUND: Conventional microscopic counting is a widely utilised method for evaluating the trypanocidal effects of drugs on intracellular amastigotes. This is a low-cost approach, but it is time-consuming and reliant on the expertise of the microscopist. So, there is a pressing need for developing technologies to enhance the efficiency of low-cost anti-Trypanosoma cruzi drug screening. OBJECTIVES: In our laboratory, we aimed to expedite the screening of anti-T. cruzi drugs by implementing a fluorescent method that correlates emitted fluorescence from green fluorescent protein (GFP)-expressing T. cruzi (Tc-GFP) with cellular viability. METHODS: Epimastigotes (Y strain) were transfected with the pROCKGFPNeo plasmid, resulting in robust and sustained GFP expression across epimastigotes, trypomastigotes, and intracellular amastigotes. Tc-GFP epimastigotes and intracellular amastigotes were exposed to a serial dilution of benznidazole (Bz). Cell viability was assessed through a combination of microscopic counting, MTT, and fluorimetry. FINDINGS: The fluorescence data indicated an underestimation of the activity of Bz against epimastigotes (IC50 75 µM x 14 µM). Conversely, for intracellular GFP-amastigotes, both fluorimetry and microscopy yielded identical IC50 values. Factors influencing the fluorimetry approach are discussed. MAIN CONCLUSIONS: Our proposed fluorometric assessment is effective and can serve as a viable substitute for the time-consuming microscopic counting of intracellular amastigotes.


Asunto(s)
Proteínas Fluorescentes Verdes , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética , Proteínas Fluorescentes Verdes/genética , Tripanocidas/farmacología , Nitroimidazoles/farmacología , Pruebas de Sensibilidad Parasitaria , Animales , Concentración 50 Inhibidora , Evaluación Preclínica de Medicamentos , Supervivencia Celular/efectos de los fármacos
3.
Sci Rep ; 14(1): 10039, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693166

RESUMEN

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Asunto(s)
Enfermedad de Chagas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Trypanosoma cruzi , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Unión Proteica
4.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38631020

RESUMEN

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Asunto(s)
Lignanos , Peperomia , Tripanocidas , Trypanosoma cruzi , Lignanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Trypanosoma cruzi/efectos de los fármacos , El Salvador , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Estructura Molecular , Peperomia/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Enfermedad de Chagas/tratamiento farmacológico
5.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644164

RESUMEN

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Asunto(s)
Enfermedad de Chagas , Quinonas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Animales , Trypanosoma cruzi/efectos de los fármacos , Ratones , Tripanocidas/farmacología , Tripanocidas/química , Quinonas/química , Quinonas/farmacología , Pruebas de Sensibilidad Parasitaria , Estructura Molecular , Luz , Modelos Animales de Enfermedad , Relación Estructura-Actividad
6.
Biomolecules ; 14(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38672424

RESUMEN

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Asunto(s)
Calcio , Enfermedad de Chagas , Homeostasis , Leishmaniasis , Fosforilcolina , Fosforilcolina/análogos & derivados , Humanos , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/metabolismo , Calcio/metabolismo , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Homeostasis/efectos de los fármacos , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Leishmania/efectos de los fármacos , Leishmania/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo
7.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673904

RESUMEN

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Asunto(s)
Benzopiranos , Glucoquinasa , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Tripanocidas/farmacología , Tripanocidas/química , Animales , Ratones , Benzopiranos/farmacología , Benzopiranos/química , Glucoquinasa/metabolismo , Glucoquinasa/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Células 3T3 NIH , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
8.
Mol Biochem Parasitol ; 258: 111618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588892

RESUMEN

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.


Asunto(s)
Aciltransferasas , Tejido Adiposo , Acido Graso Sintasa Tipo I , Leucocitos Mononucleares , Lipasa , Trypanosoma cruzi , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/parasitología , Tejido Adiposo/parasitología , Tejido Adiposo/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/genética , Lipasa/genética , Lipasa/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Carga de Parásitos , Expresión Génica , Células Cultivadas
9.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677111

RESUMEN

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Asunto(s)
Diseño de Fármacos , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Relación Dosis-Respuesta a Droga , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Humanos , Animales , Sulfonas/farmacología , Sulfonas/síntesis química , Sulfonas/química
10.
ACS Infect Dis ; 10(5): 1793-1807, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38648355

RESUMEN

Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.


Asunto(s)
Cardiomiopatía Chagásica , Fenofibrato , Macrófagos , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Animales , Ratones , Cardiomiopatía Chagásica/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Miocardio/patología , Masculino , Trypanosoma cruzi/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Miocarditis/tratamiento farmacológico , Miocarditis/parasitología
11.
ACS Infect Dis ; 10(5): 1808-1838, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38606978

RESUMEN

Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).


Asunto(s)
Enfermedad de Chagas , Oxidación-Reducción , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/tratamiento farmacológico , Animales , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Humanos , Ratones
12.
Phytomedicine ; 128: 155414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503155

RESUMEN

BACKGROUND: Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. PURPOSE: To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. METHODS: Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. RESULTS: Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7­methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. CONCLUSION: The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.


Asunto(s)
Alcaloides , Amaryllidaceae , Isoquinolinas , Leishmania infantum , Simulación del Acoplamiento Molecular , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Amaryllidaceae/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Isoquinolinas/farmacología , Isoquinolinas/química , Isoquinolinas/aislamiento & purificación , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Antiparasitarios/farmacología , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación
13.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38326914

RESUMEN

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Asunto(s)
Pruebas de Sensibilidad Parasitaria , Quinolonas , Tripanocidas , Trypanosoma brucei brucei , Humanos , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Células HEK293 , Trypanosoma brucei brucei/efectos de los fármacos , Relación Estructura-Actividad , Quinolonas/química , Quinolonas/farmacología , Quinolonas/síntesis química , Estructura Molecular , Hidrazinas/química , Hidrazinas/farmacología , Hidrazinas/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Relación Dosis-Respuesta a Droga
14.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35306933

RESUMEN

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Asunto(s)
Amida Sintasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Amida Sintasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leishmania infantum/enzimología , Macrófagos/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Trypanosoma cruzi/enzimología
15.
Biomed Pharmacother ; 148: 112761, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240521

RESUMEN

The deficit of effective treatments for Chagas disease has led to searching for new substances with therapeutic potential. Natural products possess a wide variety of chemical structural motifs and are thus a valuable source of diverse lead compounds for the development of new drugs. Castanedia santamartensis is endemic to Colombia, and local indigenous communities often use it to treat skin sores from leishmaniasis; however, its mechanism of action against the infective form of Trypanosoma cruzi has not been determined. Thus, we performed chemical and biological studies of two alcoholic leaf extracts of C. santamartensis to identify their active fractions and relate them to a trypanocidal effect and evaluate their mechanism of action. Alcoholic extracts were obtained through cold maceration at room temperature and fractionated using classical column chromatography. Both ethanolic and methanolic extracts displayed activity against T. cruzi. Chemical studies revealed that kaurenoic acid was the major component of one fraction of the methanolic extract and two fractions of the ethanolic extract of C. santamartensis leaves. Moreover, caryophyllene oxide, kaurenol, taraxasterol acetate, pentadecanone, and methyl and ethyl esters of palmitate, as well as a group of phenolic compounds, including ferulic acid, caffeic acid, chlorogenic acid, myricetin, quercitrin, and cryptochlorogenic acid were identified in the most active fractions. Kaurenoic acid and the most active fractions CS400 and CS402 collapsed the mitochondrial membrane potential in trypomastigotes, demonstrating for the first time the likely mechanism against T. cruzi, probably due to interactions with other components of the fractions.


Asunto(s)
Asteraceae , Extractos Vegetales/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Diterpenos/química , Mitocondrias/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta
16.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35193444

RESUMEN

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Asunto(s)
Antiprotozoarios/farmacología , Semicarbazonas/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Semicarbazonas/síntesis química , Semicarbazonas/química , Relación Estructura-Actividad
17.
Bioorg Med Chem ; 58: 116577, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189560

RESUMEN

Chagas disease (CD) is a centenarian neglected parasitosis caused by the protozoan Trypanosoma cruzi (T. cruzi). Despite the continuous efforts of many organizations and institutions, CD is still an important human health problem worldwide. A lack of a safe and affordable treatment has led drug discovery programmes to focus, for years, on the search for molecules enabling interference with enzymes that are essential for T. cruzi survival. In this work, the authors want to offer a brief overview of the different validated targets that are involved in diverse parasite pathways: glycolysis, sterol synthesis, the de novo biosynthesis of pyrimidine nucleotides, the degradative processing of peptides and proteins, oxidative stress damage and purine salvage and nucleotide synthesis and metabolism. Their structural aspects, function, active sites, etc. were studied and considered with the aim of defining molecular bases in the search for new effective treatments for CD. This review also compiles, as much as possible, all the inhibitors reported to date against these T. cruzi targets, serving as a reference for future research in this field.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/metabolismo , Humanos , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Tripanocidas/síntesis química , Tripanocidas/química
18.
Microbiol Spectr ; 10(1): e0185221, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138142

RESUMEN

Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately 6 to 7 million people in Latin America, with cardiomyopathy being the clinical manifestation most commonly associated with patient death during the acute phase. The etiological treatment of CD is restricted to benznidazole (Bz) and nifurtimox (Nif), which involve long periods of administration, frequent side effects, and low efficacy in the chronic phase. Thus, combined therapies emerge as an important tool in the treatment of CD, allowing the reduction of Bz dose and treatment duration. In this sense, amiodarone (AMD), the most efficient antiarrhythmic drug currently available and prescribed to CD patients, is a potential candidate for combined treatment due to its known trypanocidal activity. However, the efficacy of AMD during the acute phase of CD and its interaction with Bz or Nif are still unknown. In the present study, using a well-established murine model of the acute phase of CD, we observed that the Bz/AMD combination was more effective in reducing the peak parasitemia than both monotherapy treatments. Additionally, the Bz/AMD combination reduced (i) interleukin-6 (IL-6) levels in cardiac tissue, (ii) P-wave duration, and (iii) frequency of arrhythmia in infected animals and (iv) restored gap junction integrity in cardiac tissue. Therefore, our study validates AMD as a promising candidate for combined therapy with Bz, reinforcing the strategy of combined therapy for CD. IMPORTANCE Chagas disease affects approximately 6 to 7 million people worldwide, with cardiomyopathy being the clinical manifestation that most commonly leads to patient death. The etiological treatment of Chagas disease is limited to drugs (benznidazole and nifurtimox) with relatively high toxicity and therapeutic failures. In this sense, amiodarone, the most effective currently available antiarrhythmic drug prescribed to patients with Chagas disease, is a potential candidate for combined treatment due to its known trypanocidal effect. In the present study, we show that combined treatment with benznidazole and amiodarone improves the trypanocidal effect and reduces cardiac damage in acutely T. cruzi-infected mice.


Asunto(s)
Amiodarona/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Amiodarona/efectos adversos , Amiodarona/farmacología , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada/métodos , Corazón/efectos de los fármacos , Cardiopatías/inducido químicamente , Cardiopatías/patología , Pruebas de Función Cardíaca , Humanos , Masculino , Ratones , Nitroimidazoles/efectos adversos , Nitroimidazoles/farmacología , Parasitemia/tratamiento farmacológico
19.
Sci Rep ; 12(1): 1436, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082354

RESUMEN

In the heart tissue of acutely Trypanosoma cruzi-infected mice miR-145-5p and miR-146b-5p are, respectively, downregulated and upregulated. Here, we used the H9C2 rat cardiomyoblast cell line infected with the Colombian T. cruzi strain to investigate the parasite-host cell interplay, focusing on the regulation of miR-145-5p and miR-146b-5p expression. Next, we explored the effects of interventions with the trypanosomicidal drug Benznidazole (Bz) alone or combined with Pentoxifylline (PTX), a methylxanthine derivative shown to modulate immunological and cardiac abnormalities in a model of chronic chagasic cardiomyopathy, on parasite load and expression of miR-145-5p and miR-146b-5p. The infection of H9C2 cells with trypomastigote forms allowed parasite cycle with intracellular forms multiplication and trypomastigote release. After 48 and 144 h of infection, upregulation of miR-145-5p (24 h: 2.38 ± 0.26; 48 h: 3.15 ± 0.9-fold change) and miR-146b-5b (24 h: 2.60 ± 0.46; 48 h: 2.97 ± 0.23-fold change) was detected. The peak of both miRNA levels paralleled with release of trypomastigote forms. Addition of 3 µM and 10 µM of Bz 48 h after infection reduced parasite load but did not interfere with miR-145-5p and miR-146b-5p levels. Addition of PTX did not interfere with Bz-induced parasite control efficacy. Conversely, combined Bz + PTX treatment decreased the levels of both microRNAs, resembling the expression levels detected in non-infected H9C2 cells. Moreover, the use of miR-145-5p and miR-146b-5p mimic/inhibitor systems before infection of H9C2 cells decreased parasite load, 72 h postinfection. When H9C2 cells were treated with miR-145-5p and miR-146b-5p mimic/inhibitor 48 h after infection, all the used systems, except the miR-146b-5p inhibitor, reduced parasite load. Altogether, our data indicate that these microRNAs putatively control signaling pathways crucial for parasite-host cell interaction. Thus, miR-145-5p and miR-146b-5p deserve to be further investigated as biomarkers of parasite control and tools to identify therapeutic adjuvants to etiological treatment in Chagas disease.


Asunto(s)
Interacciones Huésped-Parásitos/efectos de los fármacos , MicroARNs/genética , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos/genética , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Nitroimidazoles/farmacología , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Pentoxifilina/farmacología , Ratas , Transducción de Señal , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrollo
20.
Toxicol In Vitro ; 78: 105267, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688839

RESUMEN

Grandiflorenic acid (GFA) is one of the main kaurane diterpenes found in different parts of Sphagneticola trilobata. It has several biological activities, especially antiprotozoal action. In turn, Chagas disease is a complex systemic disease caused by the protozoan Trypanosoma cruzi, and the drugs available to treat it involve significant side effects and impose an urgent need to search for therapeutic alternatives. In this context, our goal was to determine the effect of GFA on trypomastigote and intracellular amastigote forms. Our results showed that GFA treatment led to significantly less viability of trypomastigote forms, with morphological and ultrastructural changes in the parasites treated with IC50 of GFA (24.60 nM), and larger levels of reactive oxygen species (ROS), mitochondrial depolarization, lipid droplets accumulation, presence of autophagic vacuoles, phosphatidylserine exposure, and plasma membrane damage. In addition, the GFA treatment was able to reduce the percentage of infected cells and the number of amastigotes per macrophage (J774A.1) without showing cytotoxicity in mammalian cell lines (J774A.1, LLCMK2, THP-1, AMJ2-C11), in addition to increasing TNF-α and reducing IL-6 levels in infected macrophages. In conclusion, the GFA treatment exerted influence on trypomastigote forms through an apoptosis-like mechanism and by eliminating intracellular parasites via TNF-α/ROS pathway, without generating cellular cytotoxicity.


Asunto(s)
Antiprotozoarios/farmacología , Diterpenos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/toxicidad , Asteraceae/química , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Diterpenos/toxicidad , Humanos , Inmunomodulación/efectos de los fármacos , Macaca mulatta , Macrófagos/parasitología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma cruzi/crecimiento & desarrollo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA